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Golay error detection and

correction code

1 Introduction

Satellite data communication requires the establishment of a reliable, error-controlled
channel for enhanced performance. Fortunately, we have the ability to encode our data
in order to achieve higher data transmission quality and less bit errors in our messages
by using forward error correction coding (FEC). If you want an analytical presentation
of encoding and decoding for Golay and Reed-Solomon codes or info about their data
rate and complexity you can find it here!

2 Golay error detection and correction code

This code has been named after its creator, Marcel J. E. Golay. Binary Golay code
is a linear error-correcting code used in digital communications. There are two types
of binary Golay codes:

• Golay (23,12,7),
• Golay (24,12,8)

2.1 Golay (23,12,7)

The numbers (23,12,7) indicate the total bits of every codeword (n=23), its info bits
(k=12) and the minimum Hamming distance1 between two different codewords (d=7).
In this case, a Golay codeword has twelve bits of information to which are appended 11
check bits, which are derived from a modulo-2 division. Also, we know that this code
can detect and correct 3 bit errors, in any pattern.

In [1] there is a link level simulation with which we can have an
approximation of the function of channel coding.

Figure 1: Overview of the link level simulation

1The number of bits which differ between two binary numbers
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The mean BER can be approximated by assuming for each frame error half of the
codeword bits to be in error. Thus BERb,i ≈ 0.5 · n · FERb,i.

Figure 2: FER simulation and analytical bounds for the Golay (23,12) code

So we have an approximate estimation about the BER/SNR relation for the Golay
(23,12) code.

2.2 Golay (24,12,8)

In this case an extra parity bit is added and as a result we have a 3-byte codeword
with 12 info bits and minimum Hamming distance d=8.

For error correction only:

• 100% of one to six bit errors detected, any pattern
• 100% of odd bit errors detected, any pattern
• 99.988% of other errors detected

Using error correction:

• 100% of one to three bit errors corrected, any pattern
• 100% of four bit errors detected, any pattern
• 100% of odd numbers of bit errors detected, any pattern
• 0.24% of other errors corrected

This code is a reliable and easy to implement solution (the Golay code could be
used in even the smallest micro-controllers, such as the PIC series and 68HC05) and it
was used before in missions, for instance UKube-1. Last but not least, Golay code can't
correct burst errors (in our case more than 3-bit errors) but we can solve that problem
by using interleaving.

In [2] you can find a review on research work presented in the field of FPGA, which
aims to present systems which decrease the complexity of systems to accomplish the
requirements of low latency data and high speed application. Some of them are Golay
based and can be used for implementation or as a start for its design.
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3 Reed-Solomon

3.1 General

Reed–Solomon codes are a group of error-correcting codes that were introduced by
Irving S. Reed and Gustave Solomon in 1960[3]. They have many applications, the
most prominent of which include consumer technologies such as CDs, DVDs, Blu-ray
discs, QR codes, data transmission technologies such as DSL and WiMAX, broadcast
systems such as satellite communications, DVB and ATSC, and storage systems such
as RAID 6. There are two basic types of Reed–Solomon codes, original view and BCH
view, with BCH view being the most common as BCH view decoders are faster and
require less working storage than original view decoders.

The properties of Reed-Solomon codes make them especially suited to the applica-
tions where burst error occurs and they are the following:

• The code disregards how many bits in a symbol are incorrect. If multiple bits in
a symbol are corrupted, it only counts as a single error. Alternatively, if a data
stream is not characterized by error bursts or drop-outs but by random single bit
errors, a Reed-Solomon code is usually a poor choice. More effective codes are
available for this case.

• Designers are not required to use the natural sizes of Reed-Solomon code blocks.
A technique known as "shortening" produces a smaller code of any desired size
from a larger code. For example, the widely used (255,251) code can be converted
to a (160,128). At the decoder, the same portion of the block is loaded locally
with binary zeroes.

• A Reed–Solomon code operating on 8-bits symbols has n = 28 − 1 = 255 symbols
per block because the number of symbol in the encoded block is n = 2m − 1.

Each symbol consists of m bits. The total number of symbols is n, and the number
of information symbols is k. So, there are m · n bits of information to be encoded. The
remaining symbols (n-k) are used as parity symbols. For a given symbol width, n has a
maximum value of 2m−1. The correction capacity is t and is computed by the equation
2t = n− k, as shown below.

Figure 3: Reed-Solomon Codeword

3.2 Introduction to Golay vs. RS

In [4] you can find the presentation of a software program simulating data trans-
mission through a noisy channel. The program can simulate transmissions through a
modelization of the error rate and the kinds of errors, from submarine ones (error rate
about 10−2) to transmissions via satellites (error rate about 10−5 to 10−8). Below there
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are the results of data transmission and numerical results obtained with Reed-Solomon
codes and with the Golay (24,12,8) code.

Notations:

1. τe: The experimental binary error rate,
2. τt: The theoretical binary error rate,
3. τr: The binary residual error rate,
4. R: The transmission efficiency,
5. l: The maximal error length,
6. L: The information frame length,
7. FD: The full duplex,
8. S: The simplex,
9. l1: The maximum length of correctable bursts,
10. d or D: The minimum distance of the code.

Figure 4: Results

We observe that Golay (24,12,8) has approximately 49% transmission efficiency. In
contrast, Reed-Solomon's efficiency is much higher, 94% to 97%, and its binary error rate
is lower for the same initial data and channel. Also, both of them can correct enough
errors in order to have a really good result, but Golay needs much less length to achieve
it. The errors might be too many for satellite communication but this simulation gives
us an idea about the difference between the two codes.

3.3 Different RS codes performance

Although in [5] it is considered that the frequency range uplink is 136-146 MHz,
we can compare two Reed-Solomon coding schemes. Before that, we should remember
that QPSK/OQPSK has been previously selected and that the comparison is between
coded and uncoded QPSK / OQPSK in Rician & Log-normal channel. So, in figure 5
we notice that BERs of RS (255,243) and RS (12,9) are approximately identical while
SNR ≤ 12dB. But, when SNR > 12dB, then RS (255,243) code has much smaller BER
as the SNR increases. On the contrary, in figure 6 the BERs remain almost identical with
RS (255,243) being better than RS (12,9) for SNR < 12dB and the other way around
for SNR > 14dB. Obviously, the combination of RS (255,243) code with OQPSK is
preferred for the uplink under these circumstances (light fading channel conditions)
because the SNR needed for BER≈10−5 is much lower (but still too high and even
higher for BER≈10−6).
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Figure 5: Comparison of coded and uncoded QPSK / OQPSK for different coding schemes in Rician & Log-normal
channel (light shadowing K = 4, µ = 0.13 and σ = 1.0).

Figure 6: Comparison of coded and uncoded QPSK / OQPSK for different coding schemes in Rician & Log-normal
channel (strong shadowing: K = 0.6, µ = −1.08 and σ = 2.5)

3.4 MSK RS-Golay comparison

Figure 7 depicts the comparison between uncoded and coded MSK (we are probably
going to use it for the uplink) scheme with several coding techniques. We see that
Reed-Solomon (511,479,33) code outperforms the Golay and Hamming codes as the
SNR increases (SNR > 6dB). Moreover, Reed-Solomon code gives the second highest
gain2 and results in a better BER. You can find the whole presentation and analysis in

2The difference in required SNR to obtain a certain BER for a specific code compared to uncoded system
(to obtain higher gain a long code must be used, this demands more complex decoder and high energy
consumption).
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[6].

Figure 7: Bit error rate analysis of various coding techniques

Figure 8 presents the characteristics of different Reed-Solomon codes.

Figure 9 presents the performance of Reed-Solomon codes with various rates. The
coding gains of different Reed-Solomon codes are not the same for all the BERs.

We observe that as the information length of Reed-Solomon codes increases, the gain
decreases.

Figure 8: Characteristics of RS codes presented in Fig. 10

Figure 9: Performance Evaluation of RS code, MSK (AWGN)

By comparing figures 7 and 9 we can observe that Golay (24,12,8) is better that RS
(511,508,4) in terms of BER and gain, but it always has 0.5 rate.
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Reference [7] shows that by employing the algebraic approach in the design of RS
algorithms, the final FPGA implementation takes less area than the traditional imple-
mentations. So, this can be a useful tactic for Reed-Solomon implementation.

4 BCH (63,56) for satellite communication

4.1 BCH in general

The name Bose–Chaudhuri–Hocquenghem (BCH) arises from the initials of the
inventors' surnames. BCH codes operate over finite fields or Galois fields. BCH codes
form a large class of powerful random error-correcting cyclic codes. This class of codes
is a remarkable generalization of the Hamming code for multiple-error correction. BCH
coding can be explained in the following steps:

For any positive integers m ≥ 3 and t ≤ 2m−1, there exists a primitive BCH code
with the following parameters:

• Block length: n = 2m − 1

• Number of parity-check digits: n− k ≤ m · t
• Minimum distance: dmin ≥ 2 · t+ 1

We call this code a t-error-correcting BCH (n,k) code. The code operates in binary
Galois Field GF (2m), where m is the number of information bits. Any operation on
elements of GF always results in another field element. The generator polynomial is:

g(x) = 1 + g1 · x+ g2 · x2 + · · ·+ gn−k−1 · xn−k−1 + xn−k (1)

With respect to satellite communication BCH codes are well suited thanks to:

• Well understood algebraic structure,
• Good hamming distance for given information and code length,
• Easy implemention in hardware.

4.2 CCSDS BCH (63,56)

As presented in CCSDS TC SYNCHRONIZATION AND CHANNEL CODING:

4.2.1 Codeword Format

The BCH codeword format is a fixed-length data entity shown in figure 10. The
codeword is formulated using a systematic coding technique which contains 56 infor-
mation bits in the leading octets, and the error control bits in the last octet. The BCH
codeword contains an integer number of octets with an overall length of 8 octets (64
bits).

The complements of the seven parity check bits, P0 through P6, are located in the
first seven bits of the last octet of the BCH codeword. The complements are used to
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Figure 10: Codeword Structure

aid in maintaining bit synchronization and detection of bit slippage. The last bit of the
last octet, F0, is a filler bit appended to provide an overall codeword length which is an
integer number of octets. This filler bit shall always be a zero.

4.2.2 Encoding

A systematic block coding procedure shall be used which always generates 7 parity
check bits per codeword and which is always computed from 56 information bits. The
parity check bits are then complemented and placed into the codeword as shown in
figure 11. The code used is a (63,56) modified Bose-Chaudhuri-Hocquenghem (BCH)
code which uses the following generator polynomial to produce the seven parity bits:

g(x) = x7 + x6 + x2 + 1 (2)

Figure 11: (63,56) Modified BCH Code Generator

4.2.3 Fill data

If the Transfer Frame(s) to be transmitted in a CLTU do not fit exactly within an
integral number of BCH codewords, then filler bits shall be appended to the last Transfer
Frame to be transmitted in the CLTU until an integral number of BCH codewords is
completed. The pattern of the fill shall consist of a sequence of alternating ones and
zeros, starting with a zero. If randomization is used, the fill data mentioned above shall
be added either before or after randomization.

10



UHF uplink FEC study AcubeSAT-COM-BT-025
Convolutional codes

4.2.4 Decoding

Codewords that have been encoded using the modified BCH code described in 4.2.2
may be decoded either in an error-detecting mode (Triple Error Detection, or TED) or
in an error-correcting mode (Single Error Correction or SEC), depending on mission
requirements. When the error-detecting mode is chosen, one, two or three bits in error
will be detected within the codeword (not counting the appended Filler Bit); when the
error-correcting mode is chosen, one bit in error will be corrected and two bits in error
will be detected.

4.2.5 BCH (63, 56) performance

Currently, at the receiver side, hard decision is taken on the received symbols. The
codeword error rate (CER) performances of the hard decision decoded BCH (63, 56)
code on the AWGN channel are shown in Figure 12. They are rather poor, due to the
very limited error correction capability (SEC mode is examined because this is specified
by ECSS).

Figure 12: Performance of the BCH (63, 56) code with hard- and soft-decision decoding

The hard decision curve is of our interest, the others refer to suggestions in order
to improve the performance and can be found in [8].

Finally, an implementation and its results can be found in [9] (with MATLAB
pseudocode for the algorithm's simulation) and also an FPGA implementation.

5 Convolutional codes

5.1 General

Convolutional codes are error-correcting codes that generate parity bits via a sliding
window to calculate p > 1 parity bits by combining various subsets of bits in the
window. By using them we send only the parity bits. In contrast to classic block codes,
the windows overlap and slide by one. The window's size (in bits) is called the code's
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constraint length (K). There is the following trade-off when we select how many bits
we will have in every window:

By having a larger constraint length

• we can achieve a better resilience to bit errors, but
• it will take longer to decode

Convolutional codes are often characterized by the base code rate and the constraint
length of the encoder [n,k,K]. The base code rate is typically given as n

k , where n is the
input data rate and k is the output symbol rate.

If a convolutional code produces p parity bits per window and the window slides
by one bit, its rate will be 1

p . As the number of parity bits increases we have higher
resilience to bit errors. The trade-off is that higher amount of communication bandwidth
is devoted to coding overhead. In reality, we want to choose the p and the constraint
length to be as small as possible while providing a low enough bit error probability.

5.2 Parity Equations

Figure 13 shows an example of parity equations, which produce parity bits from
the sequence of data bits (x).

Figure 13: Convolutional code with two parity bits per message bit (p = 2) and constraint length (K = 3)

In this example, the equations are:

p0[n] = x[n] + x[n− 1] + x[n− 2] (3)

p1[n] = x[n] + x[n− 1] (4)

In general, one can view each parity equation as being produced by composing the
data bits (x) and a generator polynomial, g. In the first example above, the generator
polynomial coefficients are (1, 1, 1) and (1, 1, 0).

By gi we mean the K-element generator polynomial for parity bit pi. We can then
write pi as follows:

pi[n] = (
K−1∑
j=1

gi[j] · x[n− j]) mod 2 (5)

So now it's obvious why we call them convolutional.
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Figure 14: Examples of generator polynomials for rate 1
2
convolutional codes with different constraint lengths.

5.3 Encoding

In [10] you can find the presentation of two views of the convolutional encoder,
which are very useful for understanding convolutional codes, encoding and decoding
implementation procedures.

To convolutionally encode data, we need kmemory registers, each holding one input
bit. Usually all memory registers start with a value of 0. The encoder has n mod 2
adders (each one of them can be implemented with an XOR gate), and n generator
polynomials — one for each adder (figure 15). An input bit m1 is fed into the leftmost
register. Using the generator polynomials and the existing values in the remaining
registers, the encoder outputs n symbols. Now bit shift all register values to the right
(m1 moves to m0, m0 moves to m−1) and wait for the next input bit. If there are no
remaining input bits, the encoder continues shifting until all registers have returned
to the zero state (flush bit termination). The generator polynomials are G1 = (1, 1, 1),
G2 = (0, 1, 1) and G3 = (1, 0, 1), so output bits are calculated from the equations below:

n1 = m1 ⊕m0 ⊕m−1

n2 = m0 ⊕m−1

n3 = m1 ⊕m−1

Figure 15: Rate 1
3
non-recursive, non-systematic convolutional encoder with constraint length K = 3
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5.4 Decoding problem

A decoder that is able to infer the most likely sequence is called a maximum like-
lihood decoder and it maximizes Pr(r | c), which means that it finds c so that the
probability that r was received, given that c was sent, is maximized. If the Hamming
distance between two codewords r, c equals d and the length of the received codeword
is N, then Pr(r | c) = pd · (1− p)N−d (considering the binary symmetric channel, where
bits are received with probability p < 1

2). By taking the logarithm we have the following
equation:

logPr(r | c) = d · logp+ (N − d) · log(1− p) = d · log( p

1− p
) +N · log(1− p) (6)

We have p < 1
2 , so

p
1−p < 1 and logp < 0. Thus, if we want to minimize logPr(r | c)

we have to minimize d. As a result, the most likely sequence of parity bits that was
transmitted must be the one with the smallest Hamming distance from the sequence of
parity bits received.

5.5 Decoding convolutional codes

Several algorithms exist for decoding convolutional codes. For relatively small val-
ues of k, the Viterbi algorithm is universally used as it provides maximum likelihood
performance and is highly parallelizable. Viterbi decoders are thus easy to implement
in VLSI hardware and in software on CPUs with SIMD instruction sets.

Longer constraint length codes are more practically decoded with any of several
sequential decoding algorithms, of which the Fano algorithm is the best known. Unlike
Viterbi decoding, sequential decoding is not maximum likelihood but its complexity
increases only slightly with constraint length, allowing the use of strong, long-constraint-
length codes. Such codes were used in the Pioneer program of the early 1970s to Jupiter
and Saturn, but gave way to shorter, Viterbi-decoded codes, usually concatenated with
large Reed–Solomon error correction codes that steepen the overall bit-error-rate curve
and produce extremely low residual undetected error rates.

Both Viterbi and sequential decoding algorithms return hard decisions: the bits that
form the most likely codeword. An approximate confidence measure can be added to
each bit by use of the Soft output Viterbi algorithm. Maximum a posteriori (MAP) soft
decisions for each bit can be obtained by use of the BCJR algorithm.

5.6 Different convolutional codes performance

In [1] as we mentioned in 2.1 there is a link level simulation with which we can
have an approximation of the function of channel coding. Figure 16 depicts the BER
predictions for R = 1

3 , K = 3 convolutional code. For the simulation R = 1
3 and

dmin = 8 block code with codeword length nmax = 46 or nmin = 24 is used (we care
about the simulations of the figure). The minimum resolvable BER is 2 · 10−5.

A similar comparison was performed for R = 3
4 , K = 7 convolutional code.
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Figure 16: BER predictions for a R = 1
3
, K = 3 convolutional code

Figure 17: BER predictions for a R = 3
4
, K = 7 convolutional code

By returning to [5], which we mentioned in 3.3, although it is considered that
the frequency range uplink is 136-146 MHz we can use the results for our purpose.
QPSK/OQPSK has been previously selected and the comparison is between coded and
uncoded QPSK / OQPSK in Rician & Log-normal channel. For primary simulations
Rician and Lognormal fading are used. A code rate that is equal to R = 3

4 is chosen.
For convolutional codes octal generators (171, 133) with constraint length 7 and with
vector [110101] as the puncturing vector is used3. We should mention that by having
higher constraint length the BER becomes better (about 0.5dB per constrain length
increase by 1). The negative impact is an increased complexity. The results depict
that convolutional codes with R = 3

4 do not achieve a sufficient BER for Uplink. For
a sufficient uplink BER smaller code rates are required. Also, in light shadowing the
RS(255,243) code outperforms the other codes as we can see in figures 5 and 6.

In [5] the combination of rate 2
3 convolutional or RS(255,243) codes with OQPSK is

proposed for the uplink in light fading channel conditions. Convolutional codes with
code rate 1

2 are proposed for the strong fading channel. However, we observe that a
convolutional code with R = 1

3 achieves lower BER for lower SNR values. For example,
for SNR = 9dB we can have BER = 10−6.

3Puncturing is a technique used to make a m
n
rate code from a ”basic” low-rate (e.g., 1

n
) code. It is

reached by deletion of some bits in the encoder output. Bits are deleted according to a puncturing matrix.
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Figure 18: Comparison of coded and uncoded QPSK/OQPSK for different code rates in Rician & Log-normal
channel (light shadowing K = 4, µ = 0.13 and σ = 1.0

Figure 19: Comparison of coded and uncoded QPSK/OQPSK for different code rates in Rician & Log-normal
channel (strong shadowing K = 0.6, µ = −1.08 and σ = 2.5

In Figure 7 (presented in 3.4) we see that Reed Solomon code and convolutional code
(the rate is not given but that maybe means that we have the 'mother' rate 1

2) perform
better than the Golay and Hamming codes. It is clear that a convolutional code provides
the highest gain4. We observe that with convolutional coding we can achieve low BER
with lower SNR values comparing them to the others. On the other hand, convolution
code requires high power consumption due to its encoding and decoding complexity.
Below there are extra cases for convolutional codes:

4For those who don’t remember it gain is the difference in required SNR to obtain a certain BER for a
specific code compared to uncoded system (to obtain higher gain a long code must be used, this demands
more complex decoder and high energy consumption).
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Figure 20: Required SNR for BER = 10−6

Figure 21: BER vs. Eb
N0

for 1
2
-rate convolutional codes (Gaussian channel, BPSK, soft decision)

6 Conclusion

6.1 Comparison

At last, we can compare specific codes on certain important characteristics, in order
to have an idea on which of them suits us better. Firstly, Golay (24,12,8) seems to have
the easiest implementation of them all (it can be actuated in hardware with even the
smallest micro-controllers). However, the rate of this code is 0.5 and the SNR has to be
approximately around 9 dB in order to have BER≈10−6, (with MSK modulation). On
the contrary, RS (511,480,32) has 0.939 rate of code, can correct more bits, although
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Golay can increase the number of bits it corrects with interleaving, and is -in terms
of BER-SNR relation and gain- better than the previous one, BER ≈ 10−6 for SNR
≈ 7.6dB. We should not forget, though, that the codeword length is much bigger in
the last case (it can be easily modified as mentioned in 3.1). BCH (63,56) seems to
have slightly better BER-SNR curve for SNR < 8dB, but its implementation is not as
easy as Golay's, it corrects only 1 bit in error-correction mode and it has BER ≈ 10−6

for SNR ≈ 9.5dB. Last but not least, there are the convolutional codes which are an
interesting option. Obviously their implementation is more complex than Golay's but
we can see that their SNR required in order to achieve BER = 10−6 is much lower than
the others'. In QPSK/OQPSK example convolutional codes with rates R = 1

3 , R = 1
2 ,

R = 2
3 are much better than the other codes when it comes to BER-SNR relation. The

same happens in the MSK example where the soft and hard decision convolutional
codes are better than the most of the other codes. But we could say that rates R = 1

3
and R = 1

2 are low, so we should prefer R = 2
3 .

6.2 Verdict

RS (511,480,32) seems to be a good solution. Βy taking into account the size of
the uplink data, the easy implementation, the reliability and the analysis in this report
(even with the disadvantages of BER-SNR relation and lower rate) I think that we could
also use Golay (24,12,8) code (with or without interleaving-this will be determined
afterwards). Convolutional codes have lower (but many different) rates than RS, higher
implementation complexity than Golay and RS but they behave a lot better when it
comes to achieving BER = 10−6 with low SNR value.

6.3 Interesting case

A good idea might be to use two different error correcting codes in order to be safer,
but in this case there must be a further complexity, rate and BER-SNR relation study.
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