
NMEA & GPS module integration
with STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Dimitris Stoupis

May 29, 2020
Version: 1.1

Aristotle University of Thessaloniki

Aristotle Space and Aeronautics Team
CubeSat Project

2020

1

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Contents

Contents

1 Summary 4
2 NMEA 0183 Protocol 4

2.1 Sentence Structure . 4
2.2 Sentence Request Command Structure . 5

3 Complete Tasks 5
3.1 Hardware . 5
3.2 Communications . 6

3.2.1 Sentence Reception Implementation 6
3.2.2 Sentence Request Implementation 7

3.3 Software . 7
3.3.1 NMEA Sentence Handling Library 7
3.3.2 GPS Setup . 7
3.3.3 GPS Task . 8
3.3.4 Message Reading Task . 9
3.3.5 Command Request Sending . 9

4 General code improvements 9
4.1 Using Interrupts for USART1 TX Operations 9
4.2 Making Pointers Safer . 10

5 Bugs Encountered 10
5.1 The Million Dollar Bug . 10
5.2 Not Enough Memory . 10
5.3 Not Enough Memory Error After Some Time 10
5.4 NMEA Sentence Parsing Error . 10

6 Incomplete Tasks 11
7 Conclusion 11

Changelog
Date Version Document

Status
Comments

29/05/2020 1.1 PUBLISHED Converted to new format & fixed typos for
publication

30/08/2019 1.0 INTERNALLY
RELEASED

Initial revision

This is the latest version of this document (1.1) as of May 29, 2020. Newer versions
might be available at https://helit.org/mm/docList/AcubeSAT-OBC-BC-002.

Acronyms

API Application Programming Interface

DMA Direct Memory Access Controller

GPS Global Positioning System

Documentation template version vt1.8-dev
2

https://helit.org/mm/docList/AcubeSAT-OBC-BC-002

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Contents

IRQ Interrupt Request

MCU MicroController Unit

NMEA National Marine Electronics Association

NVIC Nested Vectored Interrupt Controller

RTC Real Time Clock

TC Transfer Complete

USART Universal Synchronous/Asynchronous Receiver/Transmitter

3

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
NMEA 0183 Protocol

1 Summary

In CubeSat missions, the Global Positioning System (

GPS) plays a key role in determining
position and velocity, two much needed parameters that help in the determination of the
satellite's trajectory. In this report, the

NMEA protocol, a standard used in a broad range
of navigation devices, is presented and the general structure of the protocol commands
is explained. Furthermore, a detailed explanation of the GPS code developed for our
CubeSat is provided, along with some proposed tests. Finally, code improvements
independent of the GPS development made to the CubeSat code are presented and
some details are provided.

2 NMEA 0183 Protocol

Recomended file: NMEA0183.pdf
Recomended website: http://www.gpsinformation.org/dale/nmea.htm

The

NMEA controls the standard protocol of communication for a broad range of nav-
igation devices and marine electronics. The NMEA 0183 protocol, used in this report,
uses simple ASCII characters, and the communication is done using serial communica-
tion protocol like Universal Synchronous/Asynchronous Receiver/Transmitter (

USART).
The protocol's data are transmitted as a structured ASCII string called a sentence from
a talker to multiple listeners.

2.1 Sentence Structure

All NMEA sentence characters are printable ASCII characters and there are some special
characters from the printable set defining the NMEA sentence. Every sentence begins
with the dollar sign character "$" and ends with a carriage return followed by a linefeed
or "<CR><LF>". There is also the asterisk ("*") special character which denotes that the
check-sum of the sentence follows.

Apart from the special characters defining a NMEA sentence, all fields of the sentence
are separated by commas and if a field does not have data available it is just left blank
with no space. The total length of the sentence cannot exceed 82 characters in total,
including the initial character and the linefeed.

An example of a NMEA sentence could be the following:

$GPGLL,4916.45,N,12311.12,W,225444,A,*1D[CR][LF]

more sentences and additional information about each sentence field can be found at
this helpful website.

4

https://www.tronico.fi/OH6NT/docs/NMEA0183.pdf
http://www.gpsinformation.org/dale/nmea.htm
https://en.wikipedia.org/wiki/NMEA_0183
http://www.gpsinformation.org/dale/nmea.htm

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Complete Tasks

2.2 Sentence Request Command Structure

Apart from the sentences sent automatically by the talker, which is the navigation device
in our case, there are also the command request sentences, where a user can request a
specific sentence, always within the range of sentences supported by the device, to be
sent through the serial communication channel.

Command request sentences are no exception regarding the standard NMEA sentence
structure illustrated in subsection 2.1. There is also a special characteristic for the
request commands and that is they have a fixed length equal to 12 characters with
starting special character and line feed included.

The general structure of a request command is as follows:

$ttllQ,sss[CR][LF]

where (tt) is the talker identifier of the device requesting the sentence, (ll) is the talker
identifier of the device accepting the request and Q is always fixed in that position
indicating sentence query. The last field (sss) contains the sentence identifier to be
requested.

Further information regarding the talker identifiers, sentence identifiers and much more
can be found in NMEA0183.pdf.

3 Complete Tasks

Source code: acubesat/obc/freertos-mockup

The GPS code development is complete, with a fully functional NMEA sentence parser
and a sentence request generator. Up to the date of this report the GPS code has not
been tested on the actual Mock-Up to have a full overview on the functionality of the
code.

3.1 Hardware

The principle remains the same across almost all devices supporting the NMEA 0183
protocol, as explained in section 2, and it is that the communication is done through
an USART channel. Using that to our advantage, we can write module and receiver
independent code and we can also configure hardware connection independent of any
receiver. Following that logic in this report, the standard communication channel used
for the GPS device on the MicroController Unit (

MCU) is USART3, set at a rate of 9600
baud. A schematic representation of the connections between the blue-pill and the
GPS module is shown in Figure 1.

In addition to the above connections, every GPS receiver has an output pin that produces
a very accurate clock pulse, with an exact period of 1 second (in some receivers this
period is configurable). In this report such a pin is not used, because for the moment
it is not needed for any synchronization operations.

5

https://www.tronico.fi/OH6NT/docs/NMEA0183.pdf
https://gitlab.com/acubesat/obc/freertos-mockup/-/blob/GPS_Code_Test_Ready/Src/Tasks/GPSTask.c

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Complete Tasks

Purple -> TX

Figure 1: GPS Module Connection Diagram (created using fritzing)

3.2 Communications

The communication channel, as described in section 3, uses the USART3 peripheral of
the STM32F103C8 MCU. The USART3 pins are PB10 for TX and PB11 for RX, so
the UART RX pin of the GPS receiver connects to PB11 and the TX pin of the GPS
receiver connects to PB10 of the MCU.

Also note that all UART transactions on the MCU are accomplished using Direct Memory
Access Controller (

DMA) channels for the USART3 peripheral, in order to use fewer of
the CPU resources. The DMA controller for USART3 specifically is DMA1.

Adding to the above, idle line detection interrupt is enabled for the USART3, as it
is a crucial part of the sentence reception chain. For more information regarding the
interrupt priority and handling refer to subsubsection 3.3.4.

3.2.1 Sentence Reception Implementation

For the reception of NMEA sentences, the MCU is configured so that channel 3 of the
DMA1 controller is always active and waiting for data. The data length for the DMA1
channel 3 buffer is defined in the GPSTask.c file as DMA_RX_BUFFER_SIZE and it is set
to 80 characters, which is equal to MINMEA_MAX_LENGTH from the minmea library (check
subsubsection 3.3.1 for library details).

Whenever a sentence is received and an idle line is detected on USART3, which means

6

http://fritzing.org/home/

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Complete Tasks

that all characters are transferred, the idle line interrupt is triggered, which initiates mes-
sage reception from the DMA1 channel 3 buffer. Finally, after successful data transfer,
the DMA1 channel 3 is waiting again for the next round of sentences.

3.2.2 Sentence Request Implementation

The sentence request sending operations on USART3 are accomplished using the DMA1
controller on channel 2. The data length for the DMA1 channel is set to a fixed character
length, equal to 12, as explained in subsection 2.2. The DMA1 channel 2 is by default
disabled and whenever there is a need for data transmission it is enabled. Also the
Transfer Complete (

TC) interrupt is enabled for this DMA channel, which is triggered
when the DMA data have completed transferring through USART, meaning that it is
ready for another transmission. After successful transmission the DMA1 channel 2 is
disabled to be ready for the next transmission.

The reason that the DMA1 TX channel (channel 2 is by default disabled, is to enabled
other DMA channels to execute their transactions, since only one channel at a time can
execute transactions on the DMA controller.

3.3 Software

The latest version of the code can be found on the GPS_Code_Test_Ready tag of the
GitLab repository. This code up to the date of this report has only been tested using
some dummy sentences sent through USART and all the tests were successful, giving
off the desired result.

3.3.1 NMEA Sentence Handling Library

For the parsing and handling operations for NMEA 0183 sentences, the minmea library
from the GitHub user Kosma Moczek is used in the code.
A brief explanation of the library usage can be found below:

• First the NMEA sentence is validated through calling the minmea_sentence_id()
function.

• The value returned by the above operation is passed to a switch statement, which
includes cases for MINMEA_SENTENCE_XXX defines, where XXX is the sentence iden-
tifier.

• After a successful case match, the appropriate structure for the sentence, with
the name minmea_sentence_xxx, is defined and then the valid sentence is parsed
using the appropriate parsing function minmea_parse_xxx(). The sequence xxx
denotes the sentence identifier.

3.3.2 GPS Setup

In the GPS setup function denoted as vSetupGPS(), the USART3 pins are initialized
first and then the USART3 peripheral is initialized. In the initialization of the USART3

7

https://gitlab.com/acubesat/obc/freertos-mockup/tags/GPS_Code_Test_Ready
https://github.com/kosma/minmea
https://github.com/kosma

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Complete Tasks

peripheral the DMA request register for both RX and TX is enabled and also the idle
line detection interrupt is enabled. The interrupt priority of the USART3 Interrupt
Request (

IRQ) routine, is set to 12 in the code line below:

NVIC_SetPriority(USART3_IRQn,
NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 11 + 1, 0));

The priority 12 is the highest possible priority that an interrupt can have in order to
able to call FreeRTOS Application Programming Interface (

API) functions within the
interrupt handler. An important remark to make here is that if you want to use any
FreeRTOS API function within the interrupt, then the interrupt's priority has to be
numerically at or above 12. Some additional details to keep in mind are:

• Interrupt priorities, using NVIC, have to be set above the
configMAX_SYSCALL_INTERRUPT_PRIORITY, whose value is set to dec-
imal 11 in our case, if FreeRTOS API calls are done in the interrupt
handler. If no FreeRTOS API calls are executed in the interrupt handler,
then the interrupt priority can be set below configMAX_SYSCALL_INTERRUPT_PRIORITY,
but above zero.

• Whenever a FreeRTOS API call is executed in an interrupt handler, the
ISR equivalent function has to be used, otherwise we are looking for
trouble!

• Specifically for the TaskNotify function, we have to create a TaskHandler_t
variable and store the task handler for the desired task to be used. We
indicate that explicitly, because due to a misunderstanding we were us-
ing the task's name, which is obviously wrong. So be careful with the
parameters of the FreeRTOS functions.

After USART3 initialization, the DMA1 RX and TX, channel 3 and 2 respectively are
initialized, with

TC interrupt enabled on channel 2. Then again the same rules, about
the priority setting, apply for the DMA Nested Vectored Interrupt Controller (

NVIC),
since FreeRTOS API function calls are made.

Finally before finishing the setup, the xGPSQueue is created.

3.3.3 GPS Task

In general, the purpose of the GPS task is to wait for message reception from the
GPS message queue defined as xGPSQueue. Data is appended to the queue using the
osQueueGPSMessage(const char * format, ...) function. Once a message is avail-
able in the queue the GPS task starts to work on that message. Firstly it tokenizes the
queue message string using [CR][LF] as a delimiter and loops over the string tokens,
if there are any left. Then there is a call to the cGetGPSData function which validates
the received message and if valid saves the appropriate data to the xGPSData structure.

The final GPS task will not differ much up to the level described above. However the
current GPS task just sends the decoded NMEA sentence data through USART1, so that
we know it works. The final version of the task will definitely do more, like notifying
other tasks of data reception, updating Real Time Clock (

RTC) and logging any errors

8

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
General code improvements

that occur during sentence handling .

3.3.4 Message Reading Task

The vGPSMessageRXTask(void *pvParameters) is a small and elegant task, but with a
very important function and that is to read the sentence data from the DMA buffer, when
a new sentence has arrived. The task is notified using a FreeRTOS TaskNotifier, from
the idle line interrupt of the USART3, in which the DMA_GPS_RX_ISR() is called, counting
the notifier. Once the notification is received the task then calls the private function
prvGPSDMAMessageRX(char *pcRxMessage), which takes care of the DMA operations
and reads the data from the buffer.

Regarding the prvGPSDMAMessageRX(char *pcRxMessage) function, an important note
to make here is that any DMA channel has to disabled first in order to set the buffer
size and also some other registers. The function does that and re-enables the channel
after setting the required data.

The last action performed by the vGPSMessageRXTask(void *pvParameters), is to put
the received message to the GPS message queue for processing. This is done in the
statement osQueueGPSMessage("%s", cRXMessage);.

3.3.5 Command Request Sending

Currently the command request vRequestGPSData(int8_t cNmeaCommand) function is
not used in the code, but it has been tested and it works fine. The purpose of this
function is so that the user provides any of the MINMEA_SENTENCE_XXX defines, and a
request command for the desired sentence is generated and sent over to the GPS receiver
through the communication channel.

After successful generation of the command string, the string is then passed as the
argument to the private function prvGPSDMAMessageTX(char *pcTxMessage); which
handles the sending of the command message through USART3 using the DMA channel
2. When the transfer is complete, the DMA channel's interrupt is triggered and the
DMA1 channel 2 is disabled, waiting for the next transaction.

4 General code improvements

Outlined below are some code improvements made, which are not related to the GPS
development.

4.1 Using Interrupts for USART1 TX Operations

Before the improvement outlined in this report vUARTTask(void *pvParameters) task
had a while loop, blocking it's operation until the

TC flag of the corresponding DMA
channel was set. In that way valuable CPU ticks were used and valuable time was
wasted in the task, especially if the strings were a bit long.

9

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Bugs Encountered

Now the

TC interrupt of the DMA1 channel 4 is used. After the DMA channel for the
USART1 TX is correctly set in the task's code and the channel is enabled, the task then
waits until it gets notified by the TaskNotifier used for this purpose. The notification
is given from the transfer complete IRQ of the DMA1 channel 4. The rules for the NVIC
priority, outlined in subsubsection 3.3.3, apply for the DMA1 channel 4 interrupt too,
because FreeRTOS API function calls are made.

4.2 Making Pointers Safer

We initialized to NULL some pointers when they were free of an address to avoid nasty
behaviors if a pointer is used uninitialized.

5 Bugs Encountered

5.1 The Million Dollar Bug

The main and most time consuming bug encountered in the development of the GPS
code, is the priority setting for the interrupts. At first the priorities were set to a relatively
random number and of course when a call to a FreeRTOS API function was made, the
whole software was crashing. After careful investigation, running the code with the
debugger line by line in the interrupts, getting inside some functions line by line and
some bit of FreeRTOS manual reading, the bug was gloriously found.

5.2 Not Enough Memory

A general quote is that we have to start to consider using another MCU with a greater
RAM capacity or use some external RAM extensions, because when all tasks were on,
a "Not enough memory" error assertion was made. This was solved by reducing the size
allocated for the xGPSQueue.

5.3 Not Enough Memory Error After Some Time

After some several successful transactions of sentences through the USART3, a "Not
enough memory" error was asserted and the reason was a forgotten pointer memory
freeing in the vGPSTask, namely the xSentence variable. So please careful with your
pointers!

5.4 NMEA Sentence Parsing Error

When the USART3 rate was set to 115200 baud, 6 out of 10 times there was a NMEA
sentence parsing error, despite sending a correct sentence. This bug was solved by
reducing the rate to 9600 baud, the same as most GPS receivers.

10

NMEA & GPS module integration with
STM32 & FreeRTOS

AcubeSAT-OBC-BC-002
Conclusion

I am speculating that this bug exists in high speeds because of the way the current code
is implemented. What I mean is that probably when the UART rate is sufficiently high,
the data from the DMA RX buffer are read before all data are actually transferred into
the buffer, resulting in incomplete sentence reading. If high speeds are to be used in
the final design, we definitely need to consider this problem.

6 Incomplete Tasks

There are definitely some important incomplete tasks and those tasks among with others
are listed below:

• Code test pending
• Sentence and general error logging
• Use GPS received parameters instead of just outputting through USART1
• Sync RTC with the received GPS time
• Use the clock signal provided from the GPS receiver for synchronization, if needed
• Find a GPS receiver that can actually be used in the CubeSat

7 Conclusion

The GPS code is independent of any particular receiver or module and it can work
with any device supporting the NMEA 0183 protocol. As outlined throughout the
report, an important note for the GPS code operation is the interrupt priorities set
for the USART and DMA channel in use for the GPS. Because all interrupts call at
least one FreeRTOS API function, their priorites have to be set to at or numerically
above 12. This is dependant to the MCU used so in order to be sure about the nu-
merically lowest value allowed, check the FreeRTOSConfig.h and more specifically the
configMAX_SYSCALL_INTERRUPT_PRIORITY define.

11

	Summary
	NMEA 0183 Protocol
	Sentence Structure
	Sentence Request Command Structure

	Complete Tasks
	Hardware
	Communications
	Sentence Reception Implementation
	Sentence Request Implementation

	Software
	NMEA Sentence Handling Library
	GPS Setup
	GPS Task
	Message Reading Task
	Command Request Sending

	General code improvements
	Using Interrupts for USART1 TX Operations
	Making Pointers Safer

	Bugs Encountered
	The Million Dollar Bug
	Not Enough Memory
	Not Enough Memory Error After Some Time
	NMEA Sentence Parsing Error

	Incomplete Tasks
	Conclusion

