
FLASH Memory Operations Report
November 17, 2018
Dimitrios Stoupis

Contents

1 Summary 2

2 FLASH Memory Overview 2

2.1 Memory Structure . 2

2.2 Programming Specifics . 3

3 Complete Tasks 4

3.1 Overview of Flash Writing . 4

3.2 Software . 4

3.2.1 Functionality Description . 4

3.2.2 Resetting Implementation . 5

4 Bugs Encountered 6

4.1 The Hidden Treasure . 6

4.2 No Fault, But No Write Too . 6

4.3 Wrote Successfully, But Not All Data . 6

5 Incomplete Tasks 7

6 Conclusion 7

Acronyms 7

1/7

ASAT CubeSAT Report 2/7

1 Summary

Memory operations, reading and writing, are a crucial part of a remote embedded
system and especially if that system resides in space, where some interesting phenomena
can occur, like bit flip from high amounts of surrounding radiation. One very important
type of memory is the FLASH memory, which contains the copy of the executable code,
and operations on that memory are important for on the fly code fixes and validations.
In this report the structure of the FLASH memory for STM32F103 is presented, along
with the detailed explanation of the completed code tasks, regarding our CubeSat mock-
up. Finally, the bugs encountered during the development time are listed and discussed.

2 FLASH Memory Overview

Recomended file(s): PM0075-(STM32F10xxx_Flash_Manual).pdf
RM0008-(STM32F103xx_Reference_Manual).pdf

The FLASH memory holds a copy of the compiled code and any mistakes on writ-
ing operations on the memory could result in a permanent fault of the application,
which is only recovered by re-uploading the compiled code. The memory's structure
differs between MicroController Unit (MCU), even those in the same family, and the
reason is mostly the density of the device, with the higher density devices having wider
FLASH memory pages. A detailed overview of the memory's structure is provided on
the PM0075 PDF file given above.

2.1 Memory Structure

Generally regardless the MCU, the FLASH memory is divided into pages and some
MCUs also have banks, which is something not considered in this report. In our case,
medium density MCU, FLASH memory is divided into 128 pages, each 1KByte in
length. The so called base address of the FLASH memory is the 0x0800 0000 in HEX
and it is the first memory address used by FLASH. An overview of the FLASH pages
is provided in the image below.

Figure 1: Flash memory page organization (image taken from Table 5 of the RM0008
manual)

https://www.st.com/content/ccc/resource/technical/document/programming_manual/10/98/e8/d4/2b/51/4b/f5/CD00283419.pdf/files/CD00283419.pdf/jcr:content/translations/en.CD00283419.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/59/b9/ba/7f/11/af/43/d5/CD00171190.pdf/files/CD00171190.pdf/jcr:content/translations/en.CD00171190.pdf
https://www.st.com/content/ccc/resource/technical/document/programming_manual/10/98/e8/d4/2b/51/4b/f5/CD00283419.pdf/files/CD00283419.pdf/jcr:content/translations/en.CD00283419.pdf

ASAT CubeSAT Report 3/7

2.2 Programming Specifics

Read access in the FLASH memory, as per the RM0008 manual is done through
normal pointers, by pointing to the desired address and then dereferencing to read
the stored data, with an example code being like *(uint16_t *)ulAddress, ulAddress
is the desired FLASH memory address. The reason that the previous pointer is cast
to 16-bit int, comes from the fact that FLASH values are stored in half-word fashion,
which is equal to 16-bits.

The previous statement brings us to the next section of the programming discussion
and that is that the FLASH memory is programmed in a half-word fashion, meaning
16-bits at a time. A very important remark here is that while reading is allowed in any
address, both aligned and not, writing is ONLY allowed in aligned addresses, which
means address ending from 0x0 and incrementing by 2, so 0x00, 0x02, 0x04 ... 0x0E.
Failure to comply with the forementioned rule, will result in hardware fault error,
causing the application to crash.

ASAT CubeSAT Report 4/7

3 Complete Tasks

Operations on FLASH memory, both reading and writing, are accomplished using
the code from files flashOps.c and flashOps.h, which are the core for operating on
FLASH. Below, along with the completed task details, there is an explanation on how
the FLASH writing is accomplished.

3.1 Overview of Flash Writing

The logic of the FLASH programming is "write once", which simply means, first
erase and then write. This implies that a page containing the desired write address,
must first be deleted, in order to be writable. The erase and programming procedures
are very well outlined in the PM0075 manual, on pages 13 and 15.
So the FLASH memory writing operation is as follows:

1. Read the contents of the page containing the desired writing address
2. Save the read contents in an array
3. Unlock the FLASH, before any writing or erasing operations is initiated
4. Erase the page containing the desired writing address
5. Reprogram the original values in other addresses and program the new value in
the desired address

6. Check if everything was programmed correctly by comparing the values before
and after

7. Lock the FLASH again

In the case of this report's code, the crucial unlocking part is accomplished through
calling the HAL_FLASH_Unlock(); function, which takes care of the procedure described
in the PM0075 manual.

An important note is that all the operations performed on the FLASH memory in
our code, are performed under a critical section of the FreeRTOS, to avoid any task
switching, resulting in application failure or permanent crash.

3.2 Software

Memory read and write operations were implemented as described above and code
implementations are found in the files flashOps.c and flashOps.h.

3.2.1 Functionality Description

Currently the program takes the value change command through NRF24 com-
munication with the ground station, sending the desired value to be programmed in
the FLASH. For the moment though, there is are hard-coded values and pre-specified
FLASH memory areas to be changed upon the command reception and that is done
for demonstration purposes. The idea remains the same, even when sending custom
payload to be written to memory. A sample screenshot depicting the successful value

ASAT CubeSAT Report 5/7

change is shown below.

Figure 2: Value change success screenshot

For the above result, the memory address of the string "CubeSAT hardware initializa-
tion...", was taken from the list debug file and two consecutive address were written, so
the values were changed accordingly.

One important remark that should not go unmentioned is the order in which the
16-bits are written in the flash memory. As we know American Standard Code for
Information Interchange (ASCII) characters are 8-bit characters, so in a single memory
address (16-bits length), two ASCII characters are written, so the value of one ASCII
characters is shifted left and ORED with the value of the other ASCII value. In the case
of our MCU, the value that appears second is the one that has to be shifted left. In other
words as we can see in the example above "CubeSAT", changed to "Cu43...", because
the value 0x3334 was programmed in the corresponding address, which corresponds
to ASCII 0x33 shifted left (or number 3) and 0x34 (or number 4) ORED with the first
shifted character. So to sum up, we can see that the storage of the values in the FLASH
memory is inverted.

3.2.2 Resetting Implementation

After every FLASH memory write operation, even on successful operations, the
FreeRTOS scheduler seems to stop, or all tasks are suspended and only interrupts
are working. This is probably caused by not updating the watchdog for long time,
thus causing the program to hang. The currently implemented code overcomes this
issue by initiating a software reset after FLASH writing operation. This is definitely
not the optimal solution and a better one needs to be found in future versions, but
for the moment the resetting implementation causes no problem to the general code
implementation of the mock-up.

ASAT CubeSAT Report 6/7

4 Bugs Encountered

4.1 The Hidden Treasure

The greatest bug of this code implementation was hidden under the huge amounts
of transistors in the FLASH memory! More specifically, there was a hardware fault going
off, with PRECISERR all the time, whenever there was an effort to write to the FLASH
memory, seemingly in any address. The reason that caused this hardware fault was a
misunderstanding of FLASH memory programming, about aligned addresses. When
aligned addresses were used, the hardware fault magically disappeared and the full
glory of the bit treasure was uncovered.

4.2 No Fault, But No Write Too

Having solved the hardware fault issue, there was still a problem in writing to the
FLASH memory, this time with no fault or other issues. The root cause for that was that
the FLASH memory page was not erased first. After implementing a page erase the page
at which the desired address was in, and then writing everything seemed to be completely
fine. Although there was still an issue and that is the writing was not done in full and
that leads us to the next and final bug encountered in this code implementation.

4.3 Wrote Successfully, But Not All Data

With the previously described solutions implemented there was still an issue with
data write. Data was written in the FLASH, but not in full. Only the first part was written
and the cause for that was the use of the macro FLASH_TYPEPROGRAM_WORD, instead of
FLASH_TYPEPROGRAM_HALFWORD, which caused the programming to skip a whole memory
block, because as it was described in this report, FLASH memory is programmed in
half-words at a time.

ASAT CubeSAT Report 7/7

5 Incomplete Tasks

There are definitely some important incomplete tasks and those tasks along with
others are listed below:

• Code merge with the master branch is pending
• Resetting implementation needs to be replaced by a better process
• Rewrite big blocks of data to FLASH to test code patching, by re-purposing some
functions on the fly

6 Conclusion

The FLASH operations code implementation is fully functional and all tests passed.
An important note to take into consideration is that before any writing event in the
FLASH, erase operation must precede the writing. Also, writing is done half-word at a
time, with each half word being "inverted". As described earlier in this report, the reset-
ting implementation has to be reconsidered and replaced by a better service, in order to
avoid resetting. Finally, I would like to mention the decisive role that community help
played in the resolution of the most important bug and the related issue on GitLab can
be found here.

Acronyms

ASCII American Standard Code for Information Interchange. 5

MCU MicroController Unit. 2

https://gitlab.com/acubesat/obc/freertos-mockup/issues/1

	Summary
	FLASH Memory Overview
	Memory Structure
	Programming Specifics

	Complete Tasks
	Overview of Flash Writing
	Software
	Functionality Description
	Resetting Implementation

	Bugs Encountered
	The Hidden Treasure
	No Fault, But No Write Too
	Wrote Successfully, But Not All Data

	Incomplete Tasks
	Conclusion
	Acronyms

