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1 Summary

This report describes the allocation of read-only and read-write memory on FreeR-
TOS applications, as well as methods for measuring and analysing it.

On an embedded system, knowing the ins and outs of memory management is
critical, due to energy, spacing and cost constraints that reduce the amount of available
memory on-board. On a Personal Computer, processes that use 100MB or more RAM
space are not unheard of, but a microcontroller with 192kB of available RAM needs
special care on the definition and usage of variables. The basic points of this report are
very important to know when developing error-prone embedded systems.
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Figure 1: Memory map of
STM32F103C8

This report centres itself on ARM Cortex-M3 microcon-
trollers, and more specifically on the STM32 variety. It
makes heavy use of hexadecimal notation.

2 Memory Allocation

2.1 Microcontroller architecture

ARM Cortex-M processors are based on a 32-bit archi-
tecture, so they support up to 232 RAM addresses, or about
4GB of theoretical maximum memory. However, as can be
seen on Figure 1, most of this space is not used, since the
microcontroller doesn't contain enough physical memory to
correspond with these values.

Accessing memory on Cortex-M is straightforward: The
value 0x2000 0000 corresponds to the first word in the RAM,
the value 0x2000 0004 corresponds to the second word in the
RAM, and so on. To instantly access this data in C, you
need a pointer to the correct address: *(0x2000000).
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https://en.wikipedia.org/wiki/Hexadecimal
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Note that the data in the memory is typically aligned in words. A word is equal
to 4 bytes, or 32 bits. This is due to the fact that memory access instructions of the
processor work with 32-bits of data each time, owing to the 32-bit architecture.

2.2 FLASH & RAM

The microcontrollers we are using contain two types of memory:

FLASH memory FLASH is the "read-only" memory (ROM) of our application. It is
non-volatile, meaning the data stays safe even after a power off. It corresponds to the
hard-drive of a general purpose machine.

FLASH is where the executable program of our microcontroller is stored. It can be
easily read in C through a pointer, but it cannot easily be written to, unless an external
programmer or the FLASH peripheral is used.

An STM32F103C8T6 chip contains 64kB of FLASH memory, located between 0x0800 0000
— 0x0800 FFFF.

RAM Random Access Memory (RAM) is the read & write memory of our application.
It is volatile, meaning its data will be removed after a microcontroller reset, but it is
much faster to read and write than FLASH.

RAM is where all the variables of the running program are stored. Marking a
non-constant variable with the volatile keyword on C makes sure that it will be stored
on the RAM, and won't be optimized away as a register.

An STM32F103C8T6 chip contains 20kB of RAMmemory, located between 0x2000 0000
— 0x2000 4FFFF.

2.3 RAM utilisation: The stack & the heap

A C program contains quite a lot of memory definitions, many of which are done
in different ways. The location of each allocation, and whether its size is known at
compile time or not, are closely related to how that object is stored on the memory.

2.3.1 Global variables

Perhaps the easiest variables to store are the ones that have a global scope and are
virtually accessible from any part of our program:

char cDMA_RX_Buffer[10] = {"\0"};
char cDMA_TX_Buffer[4] = { 't' , 'e', 's', 't' };
char currentStatus[] = "RUNNING";
int currentNumberOfFireworks = 5;
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main()
Variables
Registers

osQueueUARTMessage()
arg

buffer[128]
success

HAL_UART_Transmit()
Variables
Registers

0x2000 3500

0x2000 3400

0x2000 325f

0x2000 3100

0x2000 3000

(a) Visualisation of the stack

pcUARTMessage

char * message

int * statuses

(b) Visualisation of the heap

These are stored directly to the memory, and this allocation is fully known at
compile-time. These variables have constant memory addresses. This is called static
allocation of memory.

2.3.2 Local variables: The Stack

Variables inside functions are said to have local scope and are accessible only from
within the function:

void osQueueUARTMessage(const char * format, ...) {
va_list arg;
char buffer[128];
uint8_t success = 0;
// ...

}

These variables need to be allocated every time the function is called, and freed
every time we get out of the function.1

As such, all these are stored in a stack. Each task/process has its own stack that
gets filled whenever a function is called, and downsized when a function returns.

The size of the variables stored in the stack should be known at compile-time.
However, the stack is allocated on the memory during the run-time. As a result, it's
quite possible to run out of memory when there is no more stack space for a function
call. This is known as a stack overflow.

Note that on ARM Cortex-M processor, the stack is typically increased downwards2
(see Figure 2a). This means that the stack of a task might begin at 0x2000 4efc and
end at 0x2000 3948.
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2.3.3 malloc(): The Heap

Sometimes we need to allocate variables without knowing their size beforehand (for
example, when the user provides the number of items to store in a list). In C, this
is done through the malloc() (or, in FreeRTOS calls, vPortMalloc()) calls. This is called
dynamic memory allocation.

void vUARTTask(void* pvParameters) {
UARTMessage_t pcUARTMessage = pvPortMalloc(size);
char * message = pvPortMalloc(receivedBytes);
int * statuses = pvPortMalloc(num_tasks);

}

Variables allocated with malloc() are stored in a structure called heap, which con-
tains memory data in various positions, and is managed by an internal logic of the
operating system. Variables stored in the heap need to be freed by the programmer,
otherwise they will remain allocated forever, something called a memory leak. When
the memory is full, calls to malloc() will fail due to an out-of-memory error.

2.3.4 Constant variables

Variables defined as constant, large values in #defines, and literals are not typically
stored on the RAM, but they are typically stored on the read-only FLASH and accessed
by the software whenever needed.

#define BUFFER_SIZE 128
const unsigned int Enable_Satellite 1
const unsigned int Enable_Transmission 0
char message[] = "This is a string literal";

2.3.5 Summary

All the above can be summarised in this table:

What? Where?
Global variables Statically
Local variables Stack

malloc() Heap
const FLASH

Further reading: What and where are the stack and heap?

2.4 Memory sections

Further reading: What resides in the different memory types of a microcontroller?
Further reading: text, data and bss: Code and Data Size Explained

https://stackoverflow.com/questions/79923/what-and-where-are-the-stack-and-heap
https://electronics.stackexchange.com/questions/237740/what-resides-in-the-different-memory-types-of-a-microcontroller/237759
https://mcuoneclipse.com/2013/04/14/text-data-and-bss-code-and-data-size-explained/
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Further reading: Wikipedia — Data Segment
Further reading: C++ links: executable and object file formats…

The compiled program is stored in an executable file, such as FreertosMockup.elf,
which is an ELF file. These files contain all the binary data of the program, separated
in sections. Each section has a different role and is stored in a different way in some
place of the memory. Usual section names are .text, .rodata, .data and .bss.

2.4.1 .text

The .text section contains the executable code of the program. It includes all the
instructions that the processor will run in machine code, and is probably the most
important section of the application.

To reduce the size of .text, the programmer just needs to include less code in the
program. This can be done by simplifying existing functions, not using bloated libraries,
or by enabling the compiler optimization and linker dead code removal options.

.text is only stored on FLASH memory.

2.4.2 .data

The .data section contains all the global variables of the program. This includes
all the data that is statically allocated at compile-time, and the exact structure of the
entire .data section is stored in the executable file. The advantage of storing variables
on .data instead of making them local is that they can be measured in an exact way
before running the program, and there are no risks of overflows. However, using global
variables is often considered a bad programming practice.

To reduce the size of .data, the programmer needs to minimise the amount or size
of allocated variables.

.data is stored on FLASH and RAM memory.

2.4.3 .bss

The .bss section also contains global variables (and static function variables) of
the program, but only those that are initialized to zero. As such, they don't take up
any data space on the FLASH and can only be allocated in the RAM. For example, a
buffer[128] will be initialised in .bss, since it contains 0 data.

To reduce the size of .bss, the programmer needs to minimise the amount or size
of allocated variables.

.bss is only stored on RAM memory.

Further reading: Wikipedia — .bss

https://en.wikipedia.org/wiki/Data_segment
https://github.com/MattPD/cpplinks/blob/master/executables.md
https://en.wikipedia.org/wiki/.bss
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Figure 3: List of the sections of the compiled file 3

Figure 4: Part of the disassembled .text section of the executable 4

;-- $t:

(fcn) sym.osQueueUARTMessage 86

  sym.osQueueUARTMessage (int arg1, int arg4);

; var int local_0h @ sp+0x0

; var int local_4h @ sp+0x4

; arg int arg1 @ r0

; arg int arg4 @ r3

0x08005c9c      push {r0, r1, r2, r3}

0x08005c9e      push {lr}

0x08005ca0      sub  sp, 0x8c

0x08005ca2      add  r3, sp, 0x90

0x08005ca4      ldr  r2, [r3], 4   ; arg4

0x08005ca8      movs r1, 0x80

0x08005caa      add  r0, sp, 8

0x08005cac      str  r3, [sp]

0x08005cae      bl   sym.vsnprintf ; int vsnprintf(char *s, size_t size, const char *format, va_list arg)

0x08005cb2      add  r0, sp, 8

0x08005cb4      bl   sym.strlen    ; size_t strlen(const char *s)

0x08005cb8      adds r0, 1

0x08005cba      bl   sym.pvPortMalloc

0x08005cbe      str  r0, [sp, 4]

0x08005cc0      cbnz r0, 0x8005cd2

0x08005cd2      add  r1, sp, 8

0x08005cd4      bl   sym.strcpy    ; char *strcpy(char *dest, const char *src)

0x08005cd8      movs r3, 0

0x08005cda      ldr  r0, [pc, 0x1c] ; [0x8005cf8:4]=0x20003c5c obj.xUARTQueue

0x08005cdc      mov  r2, r3

0x08005cde      add  r1, sp, 4

0x08005ce0      ldr  r0, [r0]      ; arg1

0x08005ce2      bl   sym.xQueueGenericSend

0x08005ce6      cmp  r0, 0

0x08005ce8      bne  0x8005cc8

0x08005cc2      ldr  r0, [pc, 0x30] ; loc._d_238 ; [0x8005cf4:4]=0x800c08d loc._d_404

0x08005cc4      bl   sym.UART_SendStr

0x08005cc8      add  sp, 0x8c

0x08005cca      ldr  lr, [sp], 4

0x08005cce      add  sp, 0x10

0x08005cd0      bx   lr

0x08005cea      ldr  r0, [sp, 4]

0x08005cec      bl   sym.vPortFree

0x08005cf0      b    0x8005cc8

Figure 5: Call graph of osQueueUARTMessage 5
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2.4.4 .rodata

The .rodata section contains all the constants of the program. That includes const
variables, #define literals, and other literals, that have not been optimized away by the
compiler. For example, a list of 1024 different numbers (e.g. representing different
legal transmission frequencies) would be stored on .rodata.

.rodata is typically only stored on FLASH memory.

2.4.5 ._user_heap_stack

The ._user_heap_stack section makes sure that there is enough space for the stack
of all function calls, and the heap of classic malloc() calls. It should have a sufficient
size, since that's where all the dynamic allocation of a program will take place.

Note that the heap and stack used by FreeRTOS are not using the ._user_heap_stack
section. As such, it can be kept to a minimal size, enough to support just the main()
function and the FreeRTOS scheduler.

._user_heap_stack is only stored on RAM memory.

2.4.6 Further sections

The programmer might discover that there are other sections stored in the executable
file, but the amount of memory they take up is negligible, and they are usually required
for the MCU to operate.

Examples might be the .isr_vector needed to point out the location of ISRs, or
debug sections containing necessary debugging information.

The initialisation of all sections is done by the linker and is configured by a linker
script. In our case, that script is STM32F103C8_FLASH.ld. It stores the locations and
memory sizes of each available memory type, as well as where each section will be
stored, and what it will contain. Each MCU type comes with a different linker script.

2.5 Memory allocation in FreeRTOS

The stack and the heap are also used in a FreeRTOS application, but, in order for
the Operating System to have full control of the tasks, their stack and heap is allocated
explicitly in FreeRTOS.

2.5.1 The FreeRTOS heap

Reference: FreeRTOS — Memory Management

The FreeRTOS heap takes the form of a global variable stored in the .bss section:

#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 12 * 1024 ) )

https://www.freertos.org/a00111.html
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20000000 l d .data 00000000 .data
20000000 l O .data 00000004 uxCriticalNesting
20000010 l O .data 000000f0 impure_data
20000008 g O .data 00000004 SystemCoreClock
20000000 g .data 00000000 _sdata
2000067c g O .data 00000001 __fdlib_version
20000004 g O .data 00000001 blinkingEnabled
20000508 g O .data 00000004 __malloc_sbrk_base
20000100 g O .data 00000408 __malloc_av_
2000000c g O .data 00000004 _impure_ptr
20000680 g .data 00000000 _edata
2000050c g O .data 00000004 __malloc_trim_threshold
20000510 g O .data 0000016c __global_locale

(a) Variables in the .data section6

0800bc10 l d .rodata 00000000 .rodata
0800bc30 l O .rodata 00000007 CHANNEL_OFFSET_TAB
0800bca8 l O .rodata 00000007 nRF24_ADDR_REGS
0800bcaf l O .rodata 00000006 nRF24_RX_PW_PIPE
0800bf5b l O .rodata 00000005 nRF24_ADDR_Rx.10134
0800bf60 l O .rodata 00000005 nRF24_ADDR_Tx.10133
0800c263 l O .rodata 00000010 blanks.7236
0800c273 l O .rodata 00000010 zeroes.7237
0800c4c8 l O .rodata 00000080 npio2_hw
0800c548 l O .rodata 00000108 two_over_pi
0800c650 l O .rodata 00000040 PIo2
0800c221 g O .rodata 00000008 APBPrescTable
0800c3c0 g O .rodata 000000c8 __mprec_tens
0800c398 g O .rodata 00000028 __mprec_bigtens
0800c283 g O .rodata 00000101 _ctype_

(b) Variables in the .rodata section7

Figure 6

(a) Variables in the .bss section8

/* Highest address of the user mode stack */
_estack = 0x20005000; /* end of RAM */
/* Generate a link error if heap and stack

don't fit into RAM */
_Min_Heap_Size = 0x300; /* required amount

of heap */
_Min_Stack_Size = 0x450; /* required amount of

stack */

/* Specify the memory areas */
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH =

20K
FLASH (rx) : ORIGIN = 0x08000000, LENGTH =

64K
}

(b) Part of the configuration in the linker script

Figure 7
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static uint8_t ucHeap[ configTOTAL_HEAP_SIZE ];

The size of the heap is always specified in bytes and can be changed in FreeRTOSConfig.h.
This is essentially where all the data of FreeRTOS tasks is stored.

To explicitly allocate space in the heap, the programmer must call pvPortMalloc()
and pvPortFree(). Note that the classic malloc() and free() should not be used, as they
allocate space on the minimal remaining RAM space, and may not be thread-safe.

FreeRTOS provides algorithms that efficiently manage the heap. heap_4.c is a good
choice for beginners, while heap_1.c is the fastest option, but it doesn't allow calling
pvPortFree().

2.5.2 The FreeRTOS stack

Each task in FreeRTOS has its own stack, where local variables of all its functions
are stored. The size of this stack must be known beforehand9. For example:

xTaskCreate(vUARTTask, "UART", 300, NULL, 3, NULL);
xTaskCreate(vRefreshWWDGTask, "RefreshWWDG", 100, NULL, 6, NULL);
xTaskCreate(vBlinkyTask, "Blinking", 70, NULL, 3, NULL);

In these tasks, 300, 100 and 70 is the size of the corresponding stack in bytes. This
size should be equal or larger than the maximum amount of stack that the task will ever
require. Since that can't be accurately known beforehand, call graph analysis (which
we'll describe below) or good guesswork are needed to specify the stack size.

An incorrect stack size may cause stack overflow which can result in nasty, hard-
to-detect bugs. To prevent this, the user can query uxTaskGetStackHighWaterMark(), or use
stack overflow checking.

Internally, FreeRTOS calls vPortMalloc() to initialise the tasks. So, in a sense, these
stacks live in the heap which lives in .bss!

Further reading: FreeRTOS — How big should the stack be?

2.5.3 Static memory allocation

FreeRTOS also provides the option of allocating all the tasks and resources directly
in .bss instead of its heap. In that way, the memory usage of the application is easier
to analyse at compile-time.

#define STACK_SIZE 200 // This is in words, not bytes
StaticTask_t xTaskBuffer;
StackType_t xStack[ STACK_SIZE ];

xTaskCreateStatic(vTaskCode, "NAME", STACK_SIZE, null, 3, xStack, &xTaskBuffer);

Further reading: FreeRTOS — Static Vs Dynamic Memory Allocation

https://www.freertos.org/uxTaskGetStackHighWaterMark.html
https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://www.freertos.org/FAQMem.html#StackSize
https://www.freertos.org/Static_Vs_Dynamic_Memory_Allocation.html
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2.6 Memory protection and memory management

Many modern MCUs provide capabilities for memory protection and memory man-
agement. These units might make memory analysis a bit trickier, but will not be used,
as they do not provide many advantages for our mission.

3 Memory analysis

Further reading: Analyzing the Linker Map file with a little help from the ELF and the
DWARF

This section introduces the tools that the programmer needs in order to analyse
how much memory is used by each section, and which functions or variables make the
most use out of it and can be optimised.

Many of the tools used here are part of the GNU development tools suite, which
includes compilers, linkers, disassemblers etc. In the ARM variety, these tools get the
arm-none-eabi- prefix. For example, instead of calling gcc, one should call arm-none-eabi-gcc10.

The most useful tool for this analysis can perhaps be Atollic's build & stack ana-
lyzer. However, we will also present other tools that can fetch detailed memory usage
data.

In order to get this data, we will need access to the executable binary file of our
application. The entire build output of the app resides in the Debug folder, and the
executable is stored under the .elf extension (Executable and Linkable Format (ELF)).
The .elf is the final file generated by the linker. There is further information in the
.map file, which contains every symbol's size and location in memory, although it's not
practical to read for humans.

3.1 size

The size command can be used to obtain a very rough understanding of the memory
allocation of the entire program:

$ arm-none-eabi-size ./FreertosMockup.elf
text data bss dec hex filename
50864 1676 15696 68236 10a8c FreertosMockup.elf

Note that the above names do not correspond to sections (as seen in subsection 2.4).
text refers to all the data only in the FLASH11, bss for the data only in the RAM, and
data for both. dec is the sum of all these three, and hex is that sum in hexadecimal
format.

To calculate the amount of memory spent on each peripheral, use the following

https://en.wikipedia.org/wiki/Memory_protection
https://en.wikipedia.org/wiki/Memory_management_unit
https://en.wikipedia.org/wiki/Memory_management_unit
https://www.embeddedrelated.com/showarticle/900.php
https://www.embeddedrelated.com/showarticle/900.php
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formulas:

FLASH = text+ data
RAM = bss+ data

3.2 nm

GNU's nm provides a list of all symbols and their sizes stored in the executable.
Note that only global objects are stored, while stack variables will not be shown.

$ arm-none-eabi-nm -CS --size-sort ./FreertosMockup.elf
# ...

0800017c 0000027a T __subdf3
08009ce0 000002c8 T pow
08001060 000002dc T __udivmoddi4
08009968 00000304 T _realloc_r
080050a0 0000039c T cGetGPSData
0800a990 000003e8 T __ieee754_rem_pio2
20000270 00000408 D __malloc_av_
080061d8 0000040c T minmea_scan
08008bac 00000418 T _malloc_r
0800b08c 000006a8 T __kernel_rem_pio2
08009fa8 000009e4 T __ieee754_pow
08007fd8 00000ba8 T _dtoa_r
08006e8c 00000fa0 T _svfprintf_r
200006bc 00003000 b ucHeap

In the above example, we can see that the ucHeap variable, located in the RAM
(starting from 0x2000000) takes up the most space, with (3000)16 = (12288)10 bytes. 12
We can also see that floating point functions take up a lot of space, so the program can
be optimised by working only with integers.

3.3 readelf

GNU's readelf is a tool that extends the functionality of nm. It can be used to list
all sections in the .elf file:

$ arm-none-eabi-readelf -S ./FreertosMockup.elf
There are 23 section headers, starting at offset 0x86b74:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[ 0] NULL 00000000 000000 000000 00 0 0 0
[ 1] .isr_vector PROGBITS 08000000 010000 00010c 00 A 0 0 1
[ 2] .text PROGBITS 08000110 010110 00bafc 00 AX 0 0 16
[ 3] .rodata PROGBITS 0800bc10 01bc10 000aa0 00 A 0 0 8
[ 4] .ARM ARM_EXIDX 0800c6b0 01c6b0 000008 00 AL 2 0 4
[ 5] .init_array INIT_ARRAY 0800c6b8 01c6b8 000004 04 WA 0 0 4
[ 6] .fini_array FINI_ARRAY 0800c6bc 01c6bc 000004 04 WA 0 0 4
[ 7] .data PROGBITS 20000000 020000 000684 00 WA 0 0 4
[ 8] .bss NOBITS 20000688 020688 003600 00 WA 0 0 8
[ 9] ._user_heap_stack NOBITS 20003c88 023c88 000750 00 WA 0 0 1
[10] .ARM.attributes ARM_ATTRIBUTES 00000000 020684 000029 00 0 0 1
[11] .debug_info PROGBITS 00000000 0206ad 030367 00 0 0 1
[12] .debug_abbrev PROGBITS 00000000 050a14 006d0d 00 0 0 1
[13] .debug_loc PROGBITS 00000000 057721 00d505 00 0 0 1
[14] .debug_aranges PROGBITS 00000000 064c28 001200 00 0 0 8
[15] .debug_ranges PROGBITS 00000000 065e28 001cd0 00 0 0 8
[16] .debug_line PROGBITS 00000000 067af8 00bef0 00 0 0 1
[17] .debug_str PROGBITS 00000000 0739e8 006d75 01 MS 0 0 1
[18] .comment PROGBITS 00000000 07a75d 00007c 01 MS 0 0 1
[19] .debug_frame PROGBITS 00000000 07a7dc 0042c8 00 0 0 4
[20] .symtab SYMTAB 00000000 07eaa4 005970 10 21 993 4
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[21] .strtab STRTAB 00000000 084414 002670 00 0 0 1
[22] .shstrtab STRTAB 00000000 086a84 0000ee 00 0 0 1

It can also be used to list symbol sizes, bearing the same results as subsection 3.2: 13

$ readelf -Ws ./FreertosMockup.elf | sort -n -k3
# ...

1254: 20000270 1032 OBJECT GLOBAL DEFAULT 7 __malloc_av_
1014: 080061d9 1036 FUNC GLOBAL DEFAULT 2 minmea_scan
1288: 08008bad 1048 FUNC GLOBAL DEFAULT 2 _malloc_r
1162: 0800b08d 1704 FUNC GLOBAL DEFAULT 2 __kernel_rem_pio2
1235: 08009fa9 2532 FUNC GLOBAL DEFAULT 2 __ieee754_pow
1287: 08007fd9 2984 FUNC GLOBAL DEFAULT 2 _dtoa_r
1078: 08006e8d 4000 FUNC GLOBAL DEFAULT 2 _svfprintf_r
247: 200006bc 12288 OBJECT LOCAL DEFAULT 8 ucHeap

3.4 objdump

GNU's objdump is a disassembly tool. By calling arm-none-eabi-objdump -S ./FreertosMockup.elf,
one can see the full assembly code of the application. The -t parameter can be used to
list symbol sizes of the .text section only, and the --dwarf14 parameter prints detailed
debugging info, including sizes of the local function stacks.

3.5 linkermapviz

Source Code: https://github.com/PromyLOPh/linkermapviz15

linkermapviz is a tiny yet powerful tool that shows a visualisation of the memory
consumption of all the sections in the executable file. It provides a nice overview of the
allocation of memory while categorising the symbols based on their files and showing
the largest consumers.

https://github.com/PromyLOPh/linkermapviz
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Figure 8: Visualisation of the .text section of the freertos-mockup

Such an overview of allocated memory will be useful for a better analysis and
presentation of our embedded software.

3.6 radare2 (r2)

radare2 along with its GUI, Cutter, is a very powerful disassembly and reverse
engineering tool for binaries. While its features aren't useful for us in this context, they
can be valuable for some advanced debugging situations.

3.7 .su files

Further reading: GNU Static Stack Usage Analysis

The gcc compiler offers an -fstack-usage, which generates .su files for every source
file in the application. These files contain invaluable information about the size of the
local stack of each function in our program:

$ cat `find -iname '*.su'` | sort -n -k2 | column -t
# ...
uart.c:128:6:UART_SendBufHexFancy 56 dynamic
# ...
minmea.c:411:6:minmea_parse_gga 80 static
minmea.c:439:6:minmea_parse_gsa 80 static
TraceTask.c:10:6:vSetupTrace 80 static
minmea.c:516:6:minmea_parse_gsv 88 static
uart.c:6:6:UART_Init 104 static
GPSTask.c:195:8:cGetGPSData 112 static
BlinkyTask.c:70:6:vSetupBlinky 136 static
GPSTask.c:38:6:vSetupGPS 136 static

https://www.radare.org/r/index.html
https://github.com/radareorg/cutter
https://mcuoneclipse.com/2015/08/21/gnu-static-stack-usage-analysis/
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UARTTask.c:43:6:osQueueUARTMessage 144 static
NRF24Task.c:198:6:vTaskInfoTransmitTask 480 static

In the above output, we can see that vTaskInfoTransmitTask() and osQueueUARTMessage()
are the largest memory-eaters of our application, with 480 and 144 bytes of space
respectively, and could perhaps be optimized to save space.

Some functions, like UART_SendBufHexFancy(), may involve dynamic memory allocation,
and their stack size cannot be accurate.

Also note that the above only shows the local cost of the function. However, each
function calls other functions, and their stack sizes should be included in our calculation
as well! This can be done using a script such as avstack.pl:

$ perl avstack.pl `find -name '*.o' -not -name '*startup*'`
Func Cost Frame Height

------------------------------------------------------------------------
> vTaskInfoTransmitTask 680 484 8
> vGPSMessageRXTask 452 12 9

prvGPSDMAMessageRX 440 28 8
cGetGPSData 412 116 7

> vGPSTask 348 52 7
> vReceiveTask 332 36 7
> main 332 36 9
> vCheckTask 316 20 7
# ...

Here we can see that, for example, vGPSMessageRXTask() is also a large consumer of
memory, due to its calls to other functions.

There is also an expensive proprietary tool that performs static stack analysis.

3.8 Atollic Build Analyzer

Perhaps the easiest to use and yet most powerful tool to analyse the allocated memory
is Atollic's own build analyzer.

Figure 9: Memory Regions of the freertos-mockup

https://dlbeer.co.nz/oss/avstack.html
https://www.absint.com/stackanalyzer/index.htm
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3.8.1 Build Analyzer > Memory Details

On the Memory Details tab of the analyser, we can observe the amount of memory
spent by each symbol on each section of the executable. This is extremely useful as
an overview of which symbols take up the largest amount of memory. This data
corresponds to the exact same data received by the terminal commands

3.8.2 Static Stack Analyzer
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The Static Stack Analyzer tab performs the same analysis as the one done in
subsection 3.7, providing us however with a much more visual way to measure our
functions.

For every function, we can see its local cost (i.e. how much the variables allocated
inside it take up), and its max cost (includes calls to other functions). For functions
with unknown memory constraints or recursive calls, the data may be inaccurate, since
there is no way to predict the required memory beforehand.

The main aspect of the call graph in the stack analyzer is that every function calls
other functions, which themselves call other functions, and so on. As such, the stack
needs to hold the data for a whole bunch of nested functions.

In the above example, we can see that vGPSMessageRXTask() is expensive, mainly due
to its calls to osQueueUARTMessage and cGetGPSData.

3.9 A case study: Memory usage optimisation on freertos-mockup

During development of the mockup, a lot of RAM and FLASH memory issues
were brought up. These issues were fixed with some guessing and fine-tuning of
the corresponding variables. However, in a more mission-critical environment, it is
important to know how the memory operates and how space can be utilised more
efficiently (pun intented). With that in mind, we will try to analyse and improve the
memory utilisation of the current revision of the mockup.

As shown in Figure 9, the FLASH memory is almost getting full. While the RAM
seems to be quite used as well, most of it corresponds to the FreeRTOS heap. One of
our goals is to enlarge this heap as much as possible, so that tasks and vPortMalloc()
calls have a lot of leeway and do not run out of memory.

A quick analysis of the .text section shows quite a few C library functions, such as
_malloc_r() and __ieee754_rem_pio2. The malloc() variety should not appear, since we are
only using FreeRTOS' allocation function. However, they are necessary for C standard
library functions, such as printf(). Ideally, these functions would be reimplemented to
use FreeRTOS' ones. On the other hand, the floating functions are necessary, since we
are using a software implementation of floating point arithmetic, something that shows
the advantages of a separate Memory Protection Unit (MPU), which would reduce the
memory usage and improve the performance of our program.

Since the stack and heap are not used for anything other than main() and the occa-
sional printf() call, we can safely reduce the minimum heap and stack sizes, so that we
can increase the FreeRTOS heap size.

Also, since osQueueUARTMessage() is used often, we can reduce the buffer size to a more
reasonable value of 84 characters, saving 40 bytes per call. We can also reduce the
stack sizes of some tasks, since the call graphs show that they are not consuming large
amounts of memory.

The final list of changes is:
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diff --git a/Inc/FreeRTOSConfig.h b/Inc/FreeRTOSConfig.h
index 054c954..43714f3 100644
--- a/Inc/FreeRTOSConfig.h
+++ b/Inc/FreeRTOSConfig.h
@@ -51,7 +51,7 @@
#define configTICK_RATE_HZ ( ( TickType_t ) 1000 )
#define configMAX_PRIORITIES ( 5 )
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 128 )
-#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 12 * 1024 ) )
+#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 15 * 1024 ) )
#define configMAX_TASK_NAME_LEN ( 16 )
#define configUSE_16_BIT_TICKS 0
#define configIDLE_SHOULD_YIELD 1

diff --git a/STM32F103C8_FLASH.ld b/STM32F103C8_FLASH.ld
index 017f5f4..646c1d7 100644
--- a/STM32F103C8_FLASH.ld
+++ b/STM32F103C8_FLASH.ld
@@ -34,8 +34,8 @@ ENTRY(Reset_Handler)
/* Highest address of the user mode stack */
_estack = 0x20005000; /* end of RAM */
/* Generate a link error if heap and stack don't fit into RAM */
-_Min_Heap_Size = 0x300; /* required amount of heap */
-_Min_Stack_Size = 0x450; /* required amount of stack */
+_Min_Heap_Size = 0x200; /* required amount of heap */
+_Min_Stack_Size = 0x400; /* required amount of stack */

/* Specify the memory areas */
MEMORY

diff --git a/Src/Tasks/UARTTask.c b/Src/Tasks/UARTTask.c
index 15448bc..101ed8a 100644
--- a/Src/Tasks/UARTTask.c
+++ b/Src/Tasks/UARTTask.c
@@ -44,10 +44,10 @@ void osQueueUARTMessage(const char * fmt, ...) {

// TODO: Less copying around bits

va_list arg;
- char buffer[128];
+ char buffer[84];

va_start(arg, format);
- vsnprintf(buffer, 128, format, arg);
+ vsnprintf(buffer, 84, format, arg);

va_end(arg);

diff --git a/Src/main.c b/Src/main.c
index b83ea50..8d8eb76 100644
--- a/Src/main.c
+++ b/Src/main.c
@@ -38,8 +38,8 @@ int main(void) {

xI2CSemaphore = xSemaphoreCreateMutex();
xDataEventGroup = xEventGroupCreate();

- xTaskCreate(vCheckTask, "Check", 200, (void*) 1, 1, NULL);
- xTaskCreate(vCheckTask, "Check", 200, (void*) 2, 8, NULL);
+ xTaskCreate(vCheckTask, "Check", 150, (void*) 1, 1, NULL);
+ xTaskCreate(vCheckTask, "Check", 150, (void*) 2, 8, NULL);

#if SAT_Enable_Sensors
xTaskCreate(vMPU9250Task, "MPU9250", 300, NULL, 4, NULL);

@@ -47,8 +47,8 @@ int main(void) {
#endif

xTaskCreate(vUARTTask, "UART", 300, NULL, 3, &xUARTTaskHandle);
- xTaskCreate(vRefreshWWDGTask, "RefreshWWDG", 100, NULL, 6, NULL);
- xTaskCreate(vBlinkyTask, "Blinking", 100, NULL, 3, NULL);
+ xTaskCreate(vRefreshWWDGTask, "RefreshWWDG", 60, NULL, 6, NULL);
+ xTaskCreate(vBlinkyTask, "Blinking", 60, NULL, 3, NULL);

#if SAT_Enable_NRF24
xTaskCreate(vTransmitTask, "NRF_TX", 250, NULL, 1, NULL);

4 Incomplete Tasks

Memory management in embedded systems can be tricky, especially when there is
no general-purpose operating system that can take the abstraction away. Once again,
the developer is needed to delve deep within the software's logic to resolve any issues
that may occur.

Concerning memory management, some incomplete tasks are:

• More studying It would be useful to find resources explaining how to improve
the distribution of memory on our application, such as the following:

– The Lost Art of Structure Packing (credits to G. Pavlakis)
– Justifiably taboo: Avoiding malloc()/free() APIs in military/aerospace embed-
ded code

– What are some best practices for reducing memory usage in C?
– Possibly the worst sin of calling malloc is that it might take a very long time
to complete.

– Tips and Tricks – 7 Tips for Memory Management
• Definition of good practices
Memory allocation can become very flexible and dangerous, or very safe but re-
strictive. The choice depends on the kind of the mission and the decisions taken
by the development team. A good start for a baseline of good practices would be
an embedded C standard, such as MISRA-C.

• Expression of opinion against the heap
malloc() or vPortMalloc() can be a very powerful and simultaneously dangerous
tool. Should it be used on our CubeSat, considering that our microcontrollers
perform mission-critical operations?
It is very hard to analyse the usage of the heap, compared to global variables

http://www.catb.org/esr/structure-packing/
http://mil-embedded.com/articles/justifiably-apis-militaryaerospace-embedded-code/
http://mil-embedded.com/articles/justifiably-apis-militaryaerospace-embedded-code/
https://stackoverflow.com/questions/404615/what-are-some-best-practices-for-reducing-memory-usage-in-c
http://www.drdobbs.com/embedded-systems/embedded-memory-allocation/240169150
http://www.drdobbs.com/embedded-systems/embedded-memory-allocation/240169150
https://www.beningo.com/tips-and-tricks-7-tips-for-memory-management/
https://drive.google.com/open?id=1Q0rR1he2PlR6148vbCs4ZttZFmN_edPt
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or the stack, whose sizes are known during compile-time to some extent. Risk
analysis can be performed on using the heap, and questions such as the following
should be answered:

– Is usage of the heap allowed in MISRA-C?
– Are other mission-critical and aërospace missions making use of the heap?
What about embedded development in general? (Hint: There may be no
single answer.)

– Is there a standard that defines safe ways to use it? Is documenting every
call to it enough?

Notes

1. We can't store these variables statically, since a function calling itself would return incorrect results. Also,
we would allocate more memory than needed.

2. See Cortex-M3 Devices Generic User Guide — 2.1.2. Stacks

3. Generated using radare2, with the aaa, iS* and S= commands.

4. Created with the VV command of radare2.

5. Created with Cutter.

6. Returned using the command arm-none-eabi-objdump -t -j .data ./FreertosMockup.elf.

7. Returned using the command arm-none-eabi-objdump -t -j .rodata ./FreertosMockup.elf.

8. As shown on Atollic's build analyzer.

9. General purpose OSs don't have this limitation, since they can expand the stack if the program requires
more than is available.

10. EABI refers to the embedded-application binary interface, and none corresponds to the platform used (this
can be set to atollic).

11. As an example, text contains .text, .rodata and .isr_vector.

12. The --radix=d option can be used for nm to use decimal instead of hexadecimal notation for sizes.

13. On a C++ application, the c++filt command should be called on the output to demangle the symbol
names.

14. For more information about DWARF, see The DWARF debugging format.

15. Use the following fork that has some bugs fixed, until the pull requests are accepted: https://github.
com/kongr45gpen/linkermapviz

https://drive.google.com/open?id=1Q0rR1he2PlR6148vbCs4ZttZFmN_edPt
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0553a/BABDGADF.html
https://en.wikipedia.org/wiki/Application_binary_interface#EABI
http://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://github.com/kongr45gpen/linkermapviz
https://github.com/kongr45gpen/linkermapviz
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EABI Embedded Application Binary Interface. 19

ELF Executable and Linkable Format. 5, 10

ISR Interrupt Service Routine. 7

MCU MicroController Unit. 7, 10

MPU Memory Protection Unit. 16

OS Operating System. 19

RAM Random Access Memory. 2

ROM Read-Only Memory. 2

Contents

1 Summary 1

2 Memory Allocation 1

2.1 Microcontroller architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 FLASH & RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 RAM utilisation: The stack & the heap . . . . . . . . . . . . . . . . . . . 2

2.3.1 Global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3.2 Local variables: The Stack . . . . . . . . . . . . . . . . . . . . . . . 3

2.3.3 malloc(): The Heap . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.4 Constant variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Memory sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.1 .text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.2 .data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.3 .bss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.4 .rodata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.5 ._user_heap_stack . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.6 Further sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



ASAT CubeSAT Report 20/20

2.5 Memory allocation in FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 The FreeRTOS heap . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.2 The FreeRTOS stack . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.3 Static memory allocation . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Memory protection and memory management . . . . . . . . . . . . . . . 10

3 Memory analysis 10

3.1 size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 readelf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 objdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 linkermapviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 radare2 (r2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 .su files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.8 Atollic Build Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.8.1 Build Analyzer > Memory Details . . . . . . . . . . . . . . . . . . 15

3.8.2 Static Stack Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.9 A case study: Memory usage optimisation on freertos-mockup . . . . . . 16

4 Incomplete Tasks 17

Acronyms 19


	Summary
	Memory Allocation
	Microcontroller architecture
	FLASH & RAM
	RAM utilisation: The stack & the heap
	Global variables
	Local variables: The Stack
	malloc(): The Heap
	Constant variables
	Summary

	Memory sections
	.text
	.data
	.bss
	.rodata
	._user_heap_stack
	Further sections

	Memory allocation in FreeRTOS
	The FreeRTOS heap
	The FreeRTOS stack
	Static memory allocation

	Memory protection and memory management

	Memory analysis
	size
	nm
	readelf
	objdump
	linkermapviz
	radare2 (r2)
	.su files
	Atollic Build Analyzer
	Build Analyzer > Memory Details
	Static Stack Analyzer

	A case study: Memory usage optimisation on freertos-mockup

	Incomplete Tasks
	Acronyms

